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Weak compressibility of surface wave turbulence
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We study the growth of small-scale inhomogeneities in the density of particles floating
in weakly nonlinear small-amplitude surface waves. Despite the small amplitude, the
accumulated effect of the long-time evolution may produce a strongly inhomogeneous
distribution of the floaters: density fluctuations grow exponentially with a small but
finite exponent. We show that the exponent is of sixth or higher order in wave
amplitude. As a result, the inhomogeneities do not form within typical time scales of
the natural environment. We conclude that the turbulence of surface waves is weakly
compressible and alone it cannot be a realistic mechanism of the clustering of matter
on liquid surfaces.

1. Introduction
Clustering of matter on the surface of lakes and pools and of oil slicks and

seaweed on the sea surface is well-known empirically but there is no theory that
describes it. Since surface flows are compressible even for incompressible fluids, such
a theory should be based on the general description of the development of density
inhomogeneities in a compressible flow. An important characteristic of the formation
of small-scale inhomogeneities is the negative of the sum of the Lyapunov exponents
of the flow, λ. It gives the asymptotic logarithmic growth rate of the density on
fluid particle trajectories at large times. The rate λ is the negative of the average
value of the velocity divergence seen by a fluid particle, and it is always non-
negative because contracting regions with negative divergence have more particles
and hence larger statistical weight, see Balkovsky, Falkovich & Fouxon (2001) and
Ruelle (1996, 1997, 1999). We note that λ is also the production rate of the Gibbs
entropy, so that the condition λ� 0 can be regarded as an analogue of the second
law of thermodynamics for the dissipative dynamics, see Ruelle (1996, 1997, 1999)
and Falkovich & Fouxon (2003, 2004). For a generic flow λ> 0 and the asymptotic
density becomes a singular measure, the so-called Sinai–Ruelle–Bowen measure, see
e.g. Dorfman (1999). For floaters this means that they form a multi-fractal structure
on the surface, see Yu, Ott & Chen (1991), Falkovich, Gawȩdzki & Vergassola
(2001), Balkovsky et al. (2001), Ruelle (1999), Falkovich & Fouxon (2003, 2004), Bec,
Gawȩdzki & Horvai (2004), Balk, Falkovich & Stepanov (2004) and Eckhardt &
Schumacher (2001) for theory and Ramshankar, Berlin & Gollub (1990), Sommerer
& Ott (1993), Sommerer (1996), Nameson, Antonsen & Ott (1996), Schroder et al.
(1996), Cressman & Goldburg (2003), Denissenko, Falkovich & Lukaschuk (2006),
Bandi, Goldburg & Cressman (2006) for experiments. This structure is the attractor
of the two-dimensional dissipative dynamics obeyed by the particles on the surface,
and it evolves constantly for time-dependent flows, see e.g. Dorfman (1999) and
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Ott (2002). The Kaplan–Yorke dimension of the attractor, DKY = 1 + λ1/|λ+ λ1|, is
between one and two, assuming that the principal Lyapunov exponent λ1 is positive,
see Ott (2002).

Surface flows are generic compressible flows for which the Eulerian compressibility,
measured by the dimensionless ratio C = 〈(∂ivi)

2〉/〈(∂jvi)
2〉, is of order one, cf. Boffetta

et al. (2006a). Here angular brackets stand for the spatial average, v is the floater
velocity field, and C changes from zero for incompressible flow to one for potential
flow. For C ∼ 1 it is expected that λ∼ λ1, so that the deviation of DKY from the surface
dimension 2 is also of order one, 2 − DKY ∼ 1. The expectation holds for the flow
on the surface of three-dimensional turbulence. Performing numerical simulations
with the full three-dimensional Navier–Stokes equations, Boffetta et al. (2006a) found
C ≈ 0.5, DKY ≈ 1.15 and observed strong clustering on the surface, see also Cressman
et al. (2004), Boffetta, Davoudi & Lillo (2006b) and Eckhardt & Schumacher (2001).
However, underwater turbulence is relatively rare in the natural environment (due
to stable stratification), and it is important to consider other surface flows, of which
small-amplitude surface waves are probably the most widespread. Despite the small,
amplitude a small-but-finite λ produces a large effect over time scales of order 1/λ
and larger. Thus to estimate the role of surface waves in the formation of the floater
inhomogeneities in the natural environment, one needs to know how small λ is. In
this article we show that λ is of sixth or higher order in wave amplitude. Note
that for surface waves the degree of compressibility C is due to linear waves, which
produce potential flow with C = 1. Thus one could expect that the estimates λ∼ λ1 and
2 − DKY ∼ 1 would hold for surface waves as they do for the underwater turbulence.
We show that, under some natural non-degeneracy assumptions described in § 5, for
surface waves λ� λ1.

The calculation of λ for random waves in different situations was considered in
Balk et al. (2004) and Vucelja, Falkovich & Fouxon (2007). For surface waves, at the
linear order in the wave amplitude, the particles move periodically, see e.g. Batchelor
(1967), hence there is no net clustering. Thus analysis of clustering of the floaters
requires including the nonlinear effects. Balk et al. (2004) assumed a linear relation
between the velocity field of the floaters and the wave amplitudes, and considered
a Gaussian ensemble of non-interacting waves. The nonlinearity in this case comes
from expressing the Lagrangian objects in terms of the Eulerian ones. It was shown
that λ vanishes at the fourth order in the wave amplitude for longitudinal waves,
whose dispersion relation does not allow the same frequency for two different wave
vectors (e.g. sound, gravity, capillary waves). On the other hand, the lowest-order
non-vanishing contribution to λ1 was shown to be always of the fourth order in the
wave amplitude. Under the same assumption of a linear relation between the velocity
and the wave amplitudes, Vucelja et al. (2007) demonstrated that taking account of
the wave interactions does not change the conclusion of Balk et al. (2004) on the
vanishing of λ at the fourth order in the wave amplitude.

The results above are inconclusive as far as surface waves are concerned, for
which the relation between the velocity and the amplitudes is nonlinear due to a
small but finite curvature of the surface, see Zakharov (1966, 1968). For this case a
separate calculation of λ is needed. Here we provide such a calculation. We consider
weakly nonlinear surface waves and show that neither the wave interactions, nor
the nonlinear relation between the velocity and the amplitudes, create a non-zero
sum of the Lyapunov exponents up to the fourth order in the wave amplitudes. The
main tool of our analysis is a recently derived Green–Kubo-type formula for the
sum of the Lyapunov exponents, see Falkovich & Fouxon (2004, 2003). This formula
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expresses λ in terms of the correlations of the flow divergence in the particle frame. It
describes the interplay between the particle motion and the local flow compressions
in accumulating density inhomogeneities which become pronounced as a result of
the long-time evolution. The slowness of the particle drift from its initial position
allows us to express the correlations in terms of the Eulerian correlation functions of
the velocity, which we further evaluate by a lengthy but straightforward calculation,
cf. Vucelja et al. (2007).

The text is organized as follows. In the next Section we introduce the expression
for λ in terms of the Eulerian correlations of the surface flow velocity, valid up to the
fourth order in the wave amplitude. To perform the calculation we need to express the
velocity in terms of the normal coordinates. This is dealt with in § 3. The calculation of
the various terms occurring in λ is performed in § 4. A discussion finishes the article.

2. The sum of the Lyapunov exponents
The behaviour of the density n(t, x) in a velocity field v(t, x) is governed by the

continuity equation ∂tn + ∇ · (vn) = 0, see Batchelor (1967). Introducing Lagrangian
particle trajectories by the equation ∂t X(t, x) = v[t, X(t, x)] with the initial condition
X(0, x) = x, we may write the solution for the density as

n[t, X(t, x)] = n(0, x) exp

[
−

∫ t

0

J [t ′, X(t ′, x)]dt ′
]

.

Here we have introduced J (t, x) ≡ ∇ · v(t, x). We characterize the growth of spatial
inhomogeneities by the asymptotic logarithmic growth rate λ at large times, defined
by

λ = lim
t→∞

1

t
ln

[
n[t, X(t, x)]

n(0, x)

]
= − lim

t→∞

1

t

∫ t

0

J [t ′, X(t ′, x)]dt ′. (2.1)

The above limit is well-defined, Dorfman (1999), and it gives the negative of the sum
of the Lyapunov exponents of the flow v(t, x). It was shown in Falkovich & Fouxon
(2004, 2003) that if v(t, x) is a random, spatially homogeneous, stationary flow, then

λ =

∫ ∞

0

dt〈J (0, x)J [t, X(t, x)]〉 . (2.2)

We shall apply the above formula to the case where v(t, x) is the two-dimensional
velocity field governing the motion of the floaters in a (quasi-)stationary ensemble of
weakly nonlinear surface waves sustained by some forcing, see Zakharov, L’vov &
Falkovich (1992). We first use the smallness of the amplitude to express the Lagrangian
correlation function in (2.2) in terms of the velocity correlation functions given in the
Eulerian frame. We follow Vucelja et al. (2007) who considered (2.2) in the case of
arbitrary low-amplitude waves. For the dispersion relation Ωk, considering packets
with both the wavenumber and the width of order k, the correlation time of w can be
estimated as Ω−1

k and the correlation length as k−1. The particle deviation from the
initial position, X(t, x) − x, during the period t � Ω−1

k , is ε = kv/Ωk � 1 times smaller
than k−1 which allows expansion of (2.2) near x. Performing the expansion to order
ε4 we find

λ ≈ λ2 + λ3 + λ4, (2.3)

λ2 ≡ 1

2

∫
dt〈J (0)J (t)〉, λ3 ≡

∫ ∞

0

dt

∫ t

0

dt1

〈
J (0)

∂J (t)

∂xα
vα(t1)

〉
, (2.4)
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λ4 ≡
∫ ∞

0

dt

∫ t

0

dt1

∫ t1

0

dt2

〈
J (0)vβ(t2)

(
∂J (t)

∂xα

∂vα(t1)

∂xβ

+
∂2J (t)

∂xα∂xβ

vα(t1)

)〉
. (2.5)

Here and below we suppress the spatial coordinate x over which the averaging is
performed. The expansion above was introduced in Vucelja et al. (2007). Note that
all contributions λi are of fourth or higher order in wave amplitude, see below. To
use the above formula to find λ to order ε4, we need to establish the expression for
the surface flow v to order ε3.

3. The velocity field of the floaters
The velocity field that governs the evolution of the floater coordinates r = (x, y) in

the horizontal plane has the following form:

v(r, t) =

(
∂φ(r, z, t)

∂x
[z = η(r, t)] ,

∂φ(r, z, t)
∂y

[z = η(r, t)]
)

, (3.1)

where η(r, t) is the surface elevation and φ(r, z, t) is the velocity potential, v = ∇φ.
Zakharov (1966, 1968, 1999) showed that the system of weakly interacting surface
waves is a Hamiltonian system with canonically conjugate coordinates η(r, t) and
ψ(r, t) ≡ φ(r, η(r, t), t). The calculation of the surface flow of the floaters to order
ε3, needed for calculation of λ to order ε4, is given in Appendix A. The result is

v = i

∫
dk1

(2π)2
k1 exp[ik1 · r]ψ1 − i

∫
dk12

(2π)4
exp[i(k1 + k2) · r]|k1|k2ψ1η2

− i

2

∫
dk123

(2π)6
ei(k1+k2+k3) · rψ1η2η3

(
|k1|2k2 + |k1|2k3 − 2

√
k2

1 + k2
2 |k1|k3

)
, (3.2)

where h is the fluid depth and we introduce the shorthand notation ηi(t) = η(ki , t),
ψi(t) = ψ(ki , t), dkij l... = dkidkjdkl ... and |k| = |k| tanh(|k|h). In the approximation of
infinitely deep fluid, h → ∞, the above formula corresponds to formula (1.8) from
Zakharov (1968). Note that the velocity field on the surface v(r, t) is neither potential
nor solenoidal.

In the calculation of λ in the following Sections we will use a basic statistical
property of the wave turbulence – its approximate Gaussianity, see e.g. Zakharov
et al. (1992), Longuet-Higgins (1963) and Chelton & Eddy (1993) and references
therein. To leading order in the small wave amplitude, the correlation functions of η

and ψ can be calculated using Wick’s theorem for Gaussian statistics (Wick’s theorem
is reproduced in Appendix B). Gaussianity is most succinctly expressed in terms of
the normal coordinates a(k, t) defined by

η(k, t) =

√
|k|

2Ωk
[a(k, t) + a∗(−k, t)], ψ(k, t) = −i

√
Ωk

2|k| [a(k, t) − a∗(−k, t)], (3.3)

where Ωk is the dispersion relation: Ω2
k = |k|(g + (σ/ρ)|k|2) tanh[|k|h], where g is the

gravitational acceleration, σ is the surface tension and ρ is the density of the fluid, see
Zakharov (1999). Then in the Gaussian approximation the pair correlation functions
are given by

〈a∗(k, t)a(k′, 0)〉 = (2π)2δ(k − k′)n(k) exp[iΩkt], 〈a(k, t)a(k′, 0)〉 = 0, (3.4)
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〈ψ(k, t)ψ(k′, 0)〉 =
Ωk(2π)2δ(k + k′)

2k
[n(k) exp(−iΩkt) + n(−k) exp(iΩ−kt)],

〈η(k, t)η(k′, 0)〉 =
k(2π)2δ(k + k′)

2Ωk
[n(k) exp(−iΩkt) + n(−k) exp(iΩ−kt)],

〈ψ(k, t)η(k′, 0)〉 =
(2π)2δ(k + k′)

2i
[n(k) exp(−iΩkt) − n(−k) exp(iΩ−kt)].

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.5)

We now return to the expression for the sum of the Lyapunov exponents (2.3).

4. Calculation of the sum of the Lyapunov exponents
In this Section we provide the calculation of λ to the fourth order in wave amplitude,

based on the calculation of the different contributions λi , see (2.3)–(2.5). Some parts
of this analysis deal with subjects already considered in Balk et al. (2004) and Vucelja
et al. (2007); however our analysis is different and uses specific properties of surface
waves. Below we provide a more detailed calculation, than in the short articles Balk
et al. (2004) and Vucelja et al. (2007).

The general structure of the calculation is as follows. Substituting the expression
(3.2) for the velocity into λi , gives an expression for λ as a sum of the terms involving
products of two, three and four fields. The latter terms are already of the fourth order
in wave amplitude in the Gaussian approximation. Thus for them one can directly
use Wick’s theorem to express the answer in terms of the pair correlation functions
given by (3.5). As an example of such a computation, below we calculate λ4 which
contains the terms with four fields only. Also the calculation of λ4 is of particular
interest as will become clear in the end of the next subsection.

4.1. Calculation of λ4

We consider the contribution λ4 to λ. To calculate λ4 to the fourth order in
wave amplitude we may assume Gaussian non-interacting waves and use Wick’s
theorem to decouple the averages. Employing identities such as 〈vα(t1)∂α∂βJ (t)〉 =
− 〈(∂βvα(t1))(∂αJ (t))〉, that follow by integration by parts, one finds

λ4 =−
∫ ∞

0

dt

∫ t

0

dt1

∫ t1

0

dt2

[〈
J (0)

∂J (t)

∂xα

〉
〈vα(t1)J (t2)〉 +

〈
J (0)

∂vα(t1)

∂xβ

〉

×
〈

J (t)
∂vβ(t2)

∂xα

〉
+

〈
∂J (0)

∂xα

∂J (t)

∂xβ

〉
〈vα(t1)vβ(t2)〉 +

〈
J (t2)

∂J (t)

∂xα

〉
〈vα(t1)J (0)〉

]
.

(4.1)

Here we do not assume isotropy of the waves. Isotropy would make terms such as
〈vα(t1)J (t2)〉 vanish. At the considered order, v = ∇ψ is a potential field and a spectral
representation of the pair-correlation function gives

〈ψ(0)ψ(t)〉 =

∫
dk

(2π)2
E(k) cos (Ωkt) ⇒ 〈vα(0)vβ(t)〉 =

∫
dk

(2π)2
kαkβE(k) cos (Ωkt) ,

where E(k) is expressible in terms of n(k) in (3.5). Similar expressions hold for other
correlation functions in (4.1). Note that the potentiality of surface waves, holding
in the Gaussian approximation, makes the velocity spectrum vanish at k = 0 even if
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E(k = 0) �= 0 (see Balk et al. 2004; Vucelja et al. 2007). We find

λ4 =

∫
dkdqE(k)E(q)

(2π)4

∫ ∞

0

dt

∫ t

0

dt1

∫ t1

0

dt2

[
k4q2(k · q) sin[Ωkt] sin[Ωq(t1 − t2)]

− k2q2(k · q)2 cos[Ωkt1] cos[Ωq(t − t2)] − k4(k · q)2 cos[Ωkt] cos[Ωq(t1 − t2)]

+ k4q2(k · q) sin[Ωk(t − t2)] sin[Ωq t1]

]
. (4.2)

To calculate the time integrals we represent the products of the trigonometric functions
above as sums or differences of cosine functions and use∫ ∞

0

dt

∫ t

0

dt1

∫ t1

0

dt2 cos(at + bt1 + ct2) = − πδ(a)

b(b + c)
+

πδ(a + b)

bc
− πδ(a + b + c)

c(b + c)
,∫ ∞

0

dt

∫ t

0

dt1

∫ t1

0

dt2 cos(at − bt1 + bt2) = −πδ′(a)

b
+

πδ(a)

b2
− πδ(a − b)

b2
, b �= −c.

⎫⎪⎪⎬
⎪⎪⎭
(4.3)

All terms that are supported only at the zero frequency in the frequency representation
(δ-functions or their derivatives) are also supported only at the zero wavenumber,
since the dispersion relation of surface waves vanishes at k = 0 only. As a result, due
to the presence of positive powers of k in (4.2), these terms vanish (similarly to the
vanishing of the velocity spectrum at k = 0 shown above). It is then easy to see that
the first and the fourth terms in λ4 (having the same dependence on the wave vectors)
cancel each other, while the second and the third terms give

λ4 =

∫
dkdq
(2π)4

E(k)E(q)k2(k · q)2(k2 − q2)

(
πδ(Ωk − Ωq)

2Ω2
q

)
. (4.4)

Since for surface waves the equality of the frequencies of two waves implies the
equality of their wavelengths, then the above terms cancel each other, and λ4 = 0.
This reproduces in a simple way the result of Balk et al. (2004) that in the Gaussian
approximation λ vanishes for potential waves having the property that the equality
of the frequencies implies the equality of the wavelengths.

4.2. Reduction to terms involving wave interactions and the importance of the zero
frequency field

Having shown λ4 = 0, let us consider λ2 and λ3. The terms in λ2 and λ3 that contain
products of four fields can be calculated along the same lines as the calculation of
λ4 in the previous subsection. The calculations are given in Appendix C and they
show that these terms vanish identically, just like λ4. We are left with (see (C 6) from
Appendix C)

λ =
1

2

∫
k2

1k
2
2dk12dω

(2π)5
〈ψ1(ω)ψ2(ω = 0)〉

−
∫

dk123dω12

(2π)8
|k1|k2

3

(
k1 · k2 + k2

2

)
〈ψ1(ω1)η2(ω2)ψ3(ω = 0)〉

−
∫

dk123dω123

(2π)9
k2

1k
2
2(k2 · k3)〈ψ1(ω1)ψ2(ω2)ψ3(ω3)〉

iπ[δ(ω2) − δ(ω1)]

ω3

, (4.5)

where shorthand notation dωijl = dωidωjdωl . . . is employed and the Fourier
representation of the fields over the frequency is used. To calculate the above terms
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to the fourth order in wave amplitude, we need to account for the nonlinear wave
interactions. The calculation is facilitated by observing that the terms in (4.5) are
special: they all contain the field amplitude at the zero frequency, ψ(k, ω = 0). Note
that the value of the random wave field at the zero frequency also plays an important
role in the diffusion of the passive scalar. In that problem if the field vanishes at the
zero frequency field, then there is no turbulent diffusion at the order ε2, see Herterich
& Hasselmann (1982), Weichman & Glazman (2000) and Balk (2001).

We assume that the force that sustains the stationary wave turbulence vanishes at
the zero frequency (note however that the first term on the right-hand side of (4.5)
vanishes in the Gaussian approximation independently of this assumption, see Balk
et al. (2004) and Vucelja et al. (2007)). Then the non-zero value of ψ(k, ω = 0) is solely
due to the presence of nonlinear wave interactions. As a result, ψ(k, ω = 0) is of at least
second order in wave amplitude. Below we derive the corresponding expression for
ψ(k, ω =0) in terms of the higher-order terms. Substituting the resulting expressions
into the correlation functions allows the use of Wick’s theorem to complete the
calculation.

4.3. The expression for ψ(k, ω = 0)

To calculate λ we need to know ψ(k, ω =0) to the third order in wave amplitude.
Consider the dynamical equation of the surface elevation η, see Batchelor (1967) and
Zakharov (1968),

∂η

∂t
=

∂φ

∂z
[z = η] − ∇η∇φ[z = η]. (4.6)

To order ε2, the equation is

∂η

∂t
=

∂φ0

∂z
[z = 0] + η

∂2φ0

∂z2
[z = 0] +

∂φ1

∂z
− ∇η∇φ0[z = 0] + O(η3), (4.7)

where φ0 and φ1 are the terms of the expansion of the potential with respect to the
surface elevation, see Appendix A and Zakharov (1968). Using the expressions for
φi , performing the Fourier transform over the space and the time coordinates, and
setting the frequency ω = 0, we find

0 = |k|ψ(k, ω = 0) +

∫
dk1dω

(2π)3
k2

1ψ(k1, ω)η(k − k1, −ω)

−
∫

dk1dω

(2π)3
|k| |k1|ψ(k1, ω)η(k−k1,−ω)+

∫
dk1dω

(2π)3
k1·(k−k1)ψ(k1, ω)η(k−k1, −ω),

where we have neglected terms of order ε3. It follows that at this order ψ(k, ω = 0) is
given by

ψ(k, ω = 0) =

∫
dk1dω

(2π)3

(
|k1| − k1 · k

|k|

)
ψ(k1, ω)η(k − k1, −ω). (4.8)

The physical meaning of the above representation is that the zero frequency field arises
due to the nonlinear interactions only, and at the lowest order it can be represented
as a result of single wave scattering. The above formula suffices to calculate the last
two terms in (4.5). Indeed, after we substitute into these terms expression (4.8) for
ψ(k, ω =0), we obtain the correlation function of four fields, which again can be
calculated using Wick’s theorem. The corresponding calculation is straightforward
but cumbersome and it is given in Appendix D. As a result of the calculation these
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terms vanish identically, leaving

λ =
1

2

∫
k2

1k
2
2dk12dω

(2π)5
〈ψ1(ω)ψ2(ω = 0)〉. (4.9)

To calculate the above quadratic term we again use the fact that it involves ψ(k, ω = 0)
by slightly modifying the above computation.

4.4. Calculation of the quadratic term

To calculate the right-hand side of (4.9) we note that it is sufficient to know ψ(k1, ω)
at an arbitrarily small but finite ω where the forcing is again negligible and the
dynamic equation (4.6) can be used without the force. The Fourier transform of (4.7)
now taken at a small but finite frequency, neglecting terms of order ε3, gives

iωη(k, ω) = |k|ψ(k, ω) +

∫
dk1dω1

(2π)3
k2

1ψ1(ω1)η(k − k1, ω − ω1)

−
∫

dk1dω1

(2π)3
|k| |k1|ψ1(ω)η(k − k1, ω − ω1)

+

∫
dk1dω1

(2π)3
k1 · (k − k1)ψ1(ω)η(k − k1, ω − ω1), (4.10)

resulting in

ψ(k, ω) =
iωη(k, ω)

|k|
+

∫
dk1dω1

(2π)3

(
|k1| − k1 · k

|k|

)
ψ(k1, ω1)η(k − k1, ω − ω1) + O(η3).

It follows that (4.9) can be written

λ =
1

2

∫
k2

1k
2
2dk12

(2π)4

∫
dω

2π

〈[
iωη(k1, ω)

|k1|
+

∫
dk3dω1

(2π)3

(
|k3| − k3 · k1

|k1|

)
ψ(k3, ω1)

× η(k1 − k3, ω − ω1) + O(η3)

]
ψ(k2, ω = 0)

〉

=
1

2

∫
k2

1k
2
2dk12

(2π)4

∫
dω1

2π

〈[∫
dk3dω3

(2π)3

×
(

|k3| − k3 · k1

|k1|

)
ψ(k3, ω3)η(k1 − k3, ω1 − ω3) + O(η3)

]
ψ(k2, ω = 0)

〉
,

(4.11)

where we used ω〈η(k1, ω)ψ(k2, ω = 0)〉 ∝ ωδ(ω) = 0. Next, because ψ(k, ω =0) is by
itself of order ε2, see the previous subsection, we conclude that the O(η3) term in
(4.11) can be neglected. The physical reason for the possibility of such a neglect
is that the quadratic term in fact contains correlations of two low-frequency fields
where each one is of the order ε2. In the remaining expression, using (4.8), taking the
integral over ω3 and omitting the terms supported at the zero frequency, we find

λ =
1

8

∫
dk13

(2π)3
(k1 + k3)

4

(
|k3| − k3 · (k1 + k3)

|k1 + k3|

)
[n3n−1δ(Ω−1 − Ω3)

+ n−3n1δ(Ω1 − Ω−3)]

(
|k3| − |k1| +

k2
1 − k2

3

|k1 + k3|

)
= 0. (4.12)
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The vanishing of the above expression can be easily verified by noting that the
δ-functions imply k1 = k3. Thus we obtain that the sum of Lyapunov exponents for
weakly interacting surface waves is identically zero at the fourth order in wave
amplitude.

5. Discussion
We have shown that the sum of the Lyapunov exponents for surface wave turbulence

vanishes at the fourth order in wave amplitude. The result holds for arbitrary fluid
depth. Then, using the approximate Gaussianity of the statistics, it is easy to see
that the leading-order term in λ is of the sixth order in wave amplitude, or higher.
Therefore we have derived that λ � Ωkε

6. For waves with a typical period of the
order of seconds and with not too small ε = 0.1, we find that the time scale 1/Ωkε

6

is of the order of weeks. Thus, even if there is no degeneracy at the sixth order and
λ∼ Ωkε

6, the formation of the inhomogeneities would occur at the time scale of weeks
and larger. It is unlikely that a low-amplitude wave turbulence would persist for such
a time. Thus we expect the turbulence of small-amplitude surface waves to have a
negligible effect on the formation of the floater inhomogeneities in realistic situations.
Let us stress that this weak compressibility of surface waves holds in the sense of
the long-time action of the flow on the particles, while the characteristic value of the
ratio of the surface flow divergence to the curl is of order one.

Let us consider some estimates for the Lyapunov exponents of the floater velocity
field. For non-interacting Gaussian surface waves, λ1 is non-zero at the fourth order
in wave amplitude, see Balk et al. (2004), while λ is non-zero at the sixth order, Balk
et al. (2004) and M. G. Stepanov (2006, personal communication). The nonlinear
wave interactions and the nonlinearity of the velocity–amplitude relation add to λ1

additional terms of the fourth order in wave amplitude and higher. It is highly
implausible that these terms produce exact cancellation of λ1 at the fourth order–
such a cancellation would depend on the precise form of both the interactions and the
velocity–amplitude relation. Moreover, a positive Lyapunov exponent and Lagrangian
chaos hold even for rather simple Eulerian flows, see e.g. Bohr & Hansen (1996), so
no degeneracy for λ1 is expected that would lead to an exact cancellation at the fourth
order. Therefore we expect that λ1 for surface waves is of the fourth order in wave
amplitude. Similarly, we expect no exact cancellation of the non-vanishing Gaussian
terms for λ, at the sixth order in wave amplitude, see also below. Then we have
the following order-of-magnitude estimates: λ1 ∝ Ωkε

4 and λ∝ Ωkε
6. It follows that

surface wave turbulence is also weakly compressible in the sense of the ratio λ/λ1 � 1,
which is of the second order in wave amplitude. The Kaplan–Yorke dimension of the
particle attractor on the surface is close to the space dimension: DKY ≈ 2 − λ/λ1 ≈ 2.
For dimensionless exponents λ̃1 ≡ λ1/Ωk and λ̃≡ λ/Ωk we find the order-of-magnitude
relation λ̃∼ λ̃

3/2
1 holding at small wave amplitudes. The above estimates are supported

by numerical simulations performed by Umeki (1992) in a similar problem with
standing surface waves. It was shown there that both λ� λ1 and 2 − DKY � 1 hold.
Moreover, the numerical values of the dimensionless exponents λ̃, λ̃1 found there
can be easily seen to be in agreement with the relation λ̃∼ λ̃

3/2
1 . The box-counting

dimension of the particle attractor on the surface was found to be very close to DKY ,
which we expect to hold for wave turbulence as well. The detailed calculations of the
exact expressions for λ1 and λ are subjects for future work.

We believe that our conclusion on the weak clustering in surface waves with a
small amplitude is an important step in identifying possible reasons for the clusters
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of floaters observed ubiquitously on liquid surfaces. Our results suggest that other
mechanisms need to be explored, such as wave breaking and Langmuir circulation,
see e.g. Thorpe (2005), interplay of waves and currents, see Vucelja et al. (2007) and
wave field inhomogeneities, see Zakharov (1985) and Crawford, Saffman & Yuen
(1980).

We are indebted to G. Falkovich and V. Lebedev for constant help and useful
discussions. We are also grateful to M. G. Stepanov for helpful discussions. M.V.
thanks S. Nazarenko for a useful remark. This work was supported by the Israeli
Science Foundation.

Appendix A. The velocity field of floaters
Here we derive the velocity field of the floaters v(x, y, t) up to the third order

in wave amplitude, which is sufficient to calculate λ to the fourth order in wave
amplitude. We perform the calculation for arbitrary fluid depth h. Equation (3.1)
from the main text can be rewritten as

v(x, y, t) =

(
∂ψ

∂x
− ∂η

∂x

∂φ

∂z
[z = η(x, y, t)],

∂ψ

∂y
− ∂η

∂y

∂φ

∂z
[z = η(x, y, t)]

)
. (A 1)

We observe that in order to establish the expression for v in terms of ψ and η

up to the third order in wave amplitude, we need to find the expression for the
potential φ up to the second order in wave amplitude. To do this we note that
φ(x, y, z, t) satisfies Laplace equation ∇2φ + ∂2

z φ = 0 with the boundary conditions
φ(x, y, η(x, y, t), t) =ψ(x, y, t) and ∂zφ(z = −h) = 0, see e.g. Landau & Lifshitz (2000).
Here ∇ is the two-dimensional gradient operator. To the lowest order in wave
amplitude the boundary condition φ(x, y, η(x, y, t), t) =ψ(x, y, t) can be substituted
by φ(x, y, z = 0, t) =ψ(x, y, t). This gives the following expression for the lowest-order
approximation to φ:

φ0(x, y, z, t) =

∫
dk

(2π)2
cosh[k(z + h)]

cosh[kh]
exp[ik · r]ψ(k, t), (A 2)

where ψ(k, t) is the Fourier transform of ψ(x, y, t) and all the vectors above are
two-dimensional, e.g. r =(x, y). To find the next-order correction φ1 we use the
identity

φ(x, y, z, t) =

∫
dk

(2π)2
cosh[k(z + h)]

cosh[kh]
eik · r

∫
dr ′φ(r ′, z = 0, t)e−ik · r ′

, (A 3)

where φ(r ′, z =0, t) is the exact potential at the plane z =0. Using

φ(x, y, z, t) = φ(x, y, η(x, y, t), t) + [z − η(x, y, t)]
∂φ(x, y, z, t)

∂z

∣∣∣∣
z=η(x,y,t)

+ O[(z − η)2],

we find

φ(x, y, z = 0, t) = ψ(x, y, t) − η(x, y, t)
∂φ0(x, y, z, t)

∂z
[z = 0] + O(η2). (A 4)

Substituting the above into (A 3) we obtain that the second-order contribution to the
potential is

φ1 = −
∫

dk123

(2π)4
δ (k1 − k2 − k3)

cosh[|k1|(z + h)]

cosh[|k1|h]
exp[ik1 · r]|k2| tanh(|k2|h)ψ2η3,
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where we use the same shorthand notation as in § 3. In the approximation of infinitely
deep fluid, h → ∞, the above expression reproduces the result given in Zakharov
(1968) (there is however a sign difference in the expressions – our sign can be verified
by checking that the boundary condition φ(x, y, η(x, y), t) =ψ(x, y, t) is satisfied at
the considered order). Using the above expression we find that the first-, second- and
third-order contributions to the velocity field of the floaters are given respectively by

v0 = ∇ψ = i

∫
dk1

(2π)2
k1 exp[ik1 · r]ψ1,

v1 = − ∂φ0

∂z

∣∣∣∣
z=0

∇η = −i

∫
dk12

(2π)4
exp[i(k1 + k2) · r]|k1|k2ψ1η2,

v2 = −∇η

(
η

∂2φ0

∂z2

∣∣∣∣
z=0

+
∂φ1

∂z

∣∣∣∣
z=0

)
= − i

2

∫
dk123

(2π)6
ei(k1+k2+k3) · rψ1η2η3

×
(

|k1|2k2 + |k1|2k3 − 2

√
k2

1 + k2
2 |k1|k3

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (A 5)

where we have introduced the shorthand notation k ≡ |k| tanh(|k|h). The above
expression is equivalent to (3.2) in the main text.

Appendix B. Wick’s theorem
Our exposition of Wick’s theorem follows Reichl (1988) and Zinn-Justin (2002).

For simplicity we consider first the vector case, then generalizing to the case of the
fields. Let αi be a d-dimensional random Gaussian vector. We assume with no loss
of generality that the average 〈αi〉 vanishes, which can always be achieved by a shift.
Then the probability distribution function of α is given by

P (α) = C exp
[
− 1

2
αiΓ

−1
ij αj

]
, (B 1)

where C is a normalization constant and Γij is, as will become clear below, the
symmetric matrix of correlations. Following Zinn-Justin (2002) we introduce the
characteristic function of the imaginary argument, F (b) ≡ 〈exp[b · α]〉. Performing the
Gaussian integral with P (α) given by (B 1), we obtain

F (b) = exp
[

1
2
biΓijbj

]
, (B 2)

see Reichl (1988) and Zinn-Justin (2002). The absence of any normalization constant
above follows from the condition that the average of unity is one, F (0) = 1. The
moments of α can be found from the characteristic function by differentiation:

〈αi1αi2 . . . αin〉 =
∂

∂bi1

∂

∂bi2

. . .
∂

∂bin

〈exp [b · α]〉|b=0 =
∂n exp

[
biΓijbj/2

]
∂bi1∂bi2 . . . ∂bin

∣∣∣∣
b=0

. (B 3)

All the odd moments vanish while for the pair-correlation function we find 〈αiαj 〉 =
Γij . Using this expression for Γij , we find for the fourth-order moment that

〈αi1αi2αi3αi4〉 = 〈αi1αi2〉〈αi3αi4〉 + 〈αi1αi3〉〈αi2αi4〉 + 〈αi1αi4〉〈αi2αi3〉. (B 4)

Analogous computations with higher-order moments lead to Wick’s theorem: for
a Gaussian distribution, the average of a product of 2n stochastic variables is
equal to the sum of all possible combinations of pairwise averages of the stochastic
variables, see Reichl (1988). The generalization of Wick’s theorem to the case of a
random Gaussian field, rather than a vector, is straightforward: the average of a
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2n-point correlation function is equal to the sum of all possible combinations of pair
correlations, see Zinn-Justin (2002). In the text we use Wick’s theorem for the case of
fourth-order correlation function, employing the counterpart of (B 4).

Appendix C. Calculation of terms in λ involving products of four fields
In this Appendix we calculate those terms in λ2 and λ3 that contain products of

four fields and allow the direct use of Wick’s theorem. We first consider λ2 in (2.3).

C.1. Calculation of the fourth-order terms in λ2

Using the explicit form of the surface velocity (3.2) we obtain

2λ2 =

∫
k2

1k
2
2dk12dt

(2π)4
〈ψ1(0)ψ2(t)〉 − 2

∫
dk123dt

(2π)6
k2

3

(
k1 · k2 + k2

2

)
〈ψ1(0)η2(0)ψ3(t)〉|k1|

−
∫

dk1234dt

(2π)8
〈ψ1(0)η2(0)η3(0)ψ4(t)〉k2

4

(
|k1|2

(
k1 · k2 + k2

2 + k2 · k3

)

+

(
|k1|2 − 2

√
k2

1 + k2
2 |k1|

) (
k1 · k3 + k2 · k3 + k2

3

))

+

∫
dk1234dt

(2π)8
〈ψ1(0)η2(0)ψ3(t)η4(t)〉|k1| |k3|

(
k1 · k2+k2

2

)(
k3 · k4+k2

4

)
.

We note that the third term above, which can be decomposed by Wick’s theorem,
vanishes because it is supported at the zero frequency ω4 imposing k4 = 0. The last
term can also be analysed using Wick’s theorem. Noting that the pair-correlations are
supported at the zero sum of the wavenumbers involved, we find that the last term
equals ∫

dk1234dt

(2π)8
[
〈ψ1(0)ψ3(t)〉〈η2(0)η4(t)〉 + 〈ψ1(0)η4(t)〉〈η2(0)ψ3(t)〉

]
× |k1| |k3|(k1 · k2 + k2

2)(k3 · k4 + k2
4) . (C 1)

Using the correlation functions from (3.5) and noting the vanishing of the terms
containing δ-functions supported at the zero frequency, we can write (C 1) as∫

dk12

(2π)3

[
|k1|2

(
k1 · k2 + k2

2

)2

(
Ω1k2

4k1Ω2

)
[n1n−2δ(Ω1 − Ω−2) + n−1n2δ(Ω−1 − Ω2)]

− 1
4
|k1| |k2|(k1 · k2 + k2

2)
(
k1 · k2 + k2

1

)
[n1n−2δ(Ω1 − Ω−2) + n−1n2δ(Ω−1 − Ω2)]

]
=0,

where we have introduced the shorthand notation: n(±ki , t) = n±i(t) and Ω±ki
=Ω±i .

Above, we used that for surface waves Ωk is an increasing function of |k| and that
δ-functions imply Ω1 = Ω2 and k2

1 = k2
2 . We find that λ2 can be written as

λ2 =

∫
dk12dt

2(2π)4
k2

1k
2
2〈ψ1(0)ψ2(t)〉−

∫
dk123dt

(2π)6
|k1|k2

3

(
k1 · k2+k2

2

)
〈ψ1(0)η2(0)ψ3(t)〉. (C 2)

The calculation of the above terms requires taking account of the interactions. We
now consider the terms in λ3 that can be calculated by the direct use of Wick’s
theorem.
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C.2. Calculation of the fourth-order terms in λ3

We consider λ3 from (2.3). Using the expression (3.2) for the velocity, we obtain

λ3 = −
∫

dk123

(2π)6
k2

1k
2
2(k2 · k3)

∫ ∞

0

dt

∫ t

0

dt1〈ψ1(0)ψ2(t)ψ3(t1)〉

+

∫
dk1234

(2π)8

∫ ∞

0

dt

∫ t

0

dt1

[
|k1|

(
k1 · k2 + k2

2

)
k2

3〈ψ1(0)η2(0)ψ3(t)ψ4(t1)〉

× (k3 · k4) + k2
1 |k2|(k2 · k3 + k2

3)
(
k2 · k4 + k3 · k4

)
〈ψ1(0)ψ2(t)η3(t)ψ4(t1)〉

+ k2
1k

2
2(k2 · k4)|k3|〈ψ1(0)ψ2(t)ψ3(t1)η4(t1)〉

]
. (C 3)

We can use Wick’s theorem for the last three terms. Employing the identity∫ ∞

0

dt

∫ t

0

dt1 exp[iω1t + iω2t1] =
iπ[δ(ω1) − δ(ω1 + ω2)]

ω2

, (C 4)

We find that part of the terms obtained contain δ-functions supported at the zero
frequency and they vanish because of the vanishing of the integrand there. Let us
consider the rest of the terms. For the first of the fourth-order terms in (C 3) we find∫

dk12

(2π)4
|k1|

{
|k1|2

(
k1 · k2 + k2

2

)[n−1n2δ(Ω−1 − Ω2)

Ω2

+
n−2n1δ(Ω−2 − Ω1)

Ω−2

]

− k2
2(k1 · k2 + k2

2)

[
n−1n2δ(Ω−1 − Ω2)

Ω−1

+
n−2n1δ(Ω−2 − Ω1)

Ω1

]}
Ω1π

4k1

(k1 · k2) = 0,

where the equality of the frequencies implies the equality of the wavelengths.
Analogously, for the second Gaussian term we find∫

Ω2|k2|dk23

(4π)3k2

{
|k2|2

(
k2 · k3+k2

3

)2

[
n−3n2δ(Ω−3 − Ω2)

Ω−3

+
n−2n3δ(Ω−2 − Ω3)

Ω3

]

− k2
3

(
k2 · k3 + k2

3

)(
k2 · k3 + k2

2

)[n−3n2δ(Ω−3 − Ω2)

Ω2

+
n−2n3δ(Ω−2 − Ω3)

Ω−2

]}
= 0.

Finally, the third Gaussian term contains only δ-functions supported at the zero
frequencies, so it also produces zero. We conclude that λ3 can be written as

λ3 = −
∫

dk123

(2π)6
k2

1k
2
2(k2 · k3)

∫ ∞

0

dt

∫ t

0

dt1〈ψ1(0)ψ2(t)ψ3(t1)〉. (C 5)

C.3. Summary

As a result of the calculation in the previous subsections, adding equations (C 2) and
(C 5), one can write λ as a sum over the terms the calculation of which involves the
wave interactions. Using Fourier representation over the frequency we find

λ =
1

2

∫
k2

1k
2
2dk12dω

(2π)5
〈ψ1(ω)ψ2(ω = 0)〉

−
∫

dk123dω12

(2π)8
|k1|k2

3

(
k1 · k2 + k2

2

)
〈ψ1(ω1)η2(ω2)ψ3(ω = 0)〉

−
∫

dk123dω123

(2π)9
k2

1k
2
2(k2 · k3)〈ψ1(ω1)ψ2(ω2)ψ3(ω3)〉

iπ[δ(ω2) − δ(ω1)]

ω3

, (C 6)
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where we have introduced shorthand notation dωijl = dωidωjdωl . . . and used in the
last term the identity (C 4) and the proportionality of the correlation function to
δ(ω1 + ω2 + ω3).

Appendix D. Interaction terms containing the products of three fields
To calculate the interaction terms of the third order we use (4.8), Wick’s

decomposition and a Fourier transformed version of (3.5). The second term in (C 6)
can be written with the help of (4.8) as

−
∫

dk1234dω123

(2π)11
|k1|k2

3

(
k1 · k2 + k2

2

) (
|k4| − k4 · k3

|k3|

)
〈ψ(k1, ω1)η(k2, ω2)ψ(k4, ω3)

× η(k3 − k4, −ω3)〉 = −
∫

dk12dω1

(2π)3
|k1|(k1 + k2)

2
(
k1 · k2 + k2

2

) (
|k1| − k1 · (k1 + k2)

|k1 + k2|

)

×
(

Ω1|k2|
4Ω2|k1|

)
[n1δ(ω1 + Ω1) + n−1δ(ω1 − Ω−1)][n2δ(−ω1 + Ω2) + n−2δ(ω1 + Ω−2)]

+
1

4

∫
dk12dω1

(2π)3
|k1|(k1 + k2)

2
(
k1 · k2 + k2

2

) (
|k2| − k2 · (k1 + k2)

|k1 + k2|

)

× [n1δ(ω1 + Ω1) − n−1δ(ω1 − Ω−1)][n−2δ(ω1 + Ω−2) − n2δ(ω1 − Ω2)], (D 1)

where to show that the remaining contraction vanishes, we can use that 〈ψ(k, ω = 0)〉
is representable as an integral over 〈ψ(k, t)η(k′, t)〉, which in the Gaussian
approximation vanishes by (3.5). Using Ω−k = Ωk and noting that the terms supported
at Ωk = 0 vanish, we can rewrite as

−1

4

∫
dk12

(2π)3
|k1|(k1 + k2)

2(k1 · k2 + k2
2)

(
|k1| − k1 · (k1 + k2)

|k1 + k2|

)
[n1n−2δ(Ω1 − Ω−2)

+ n−1n2δ(Ω2 − Ω−1)] +
1

4

∫
dk12

(2π)3
|k1|(k1 + k2)

2
(
k1 · k2 + k2

2

)(
|k2| − k2 · (k1 + k2)

|k1 + k2|

)

× [n1n−2δ(Ω1 − Ω−2) + n−1n2δ(Ω2 − Ω−1)] =
1

4

∫
dk12

(2π)3
|k1|(k1 + k2)

2
(
k1 · k2 + k2

2

)

×
(

|k2| − |k1| +
k2

1 − k2
2

|k1 + k2|

)
[n1n−2δ(Ω1 − Ω−2) + n−1n2δ(Ω2 − Ω−1)] = 0, (D 2)

where we have used that δ-functions imply Ω1 = Ω2 and k1 = k2. Let us now consider
the last term in (C 6) that can be written as

iπ

∫
dk123dω23

ω3(2π)9
k2

1k
2
2 k3 · (k2 − k1)〈ψ(k1, ω = 0)ψ(k2, ω2)ψ(k3, ω3)〉. (D 3)

Substituting (4.8) we find

iπ

∫
dk1234dω234k

2
1k

2
2 k3·(k2 − k1)

ω3(2π)12

(
|k4| − k4 · k1

|k1|

)
〈η(k1 − k4, −ω4)ψ(k2, ω2)ψ(k3, ω3)

× ψ(k4, ω4)〉 = iπ

∫
dk23dω3

ω3(2π)4
(k2 + k3)

2k2
2 k3 · (2k2 + k3)

(
|k3| − k3 · (k2 + k3)

|k2 + k3|

)
Ω3

4i|k3|
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× [n2δ(ω3 − Ω2) − n−2δ(ω3 + Ω−2)] [n3δ(ω3 + Ω3) + n−3δ(ω3 − Ω−3)] + iπ

∫
dk23dω3

ω3(2π)4

× (k2 + k3)
2k2

2 k3 · (2k2 + k3)

(
|k2| − k2 · (k2 + k3)

|k2 + k3|

)(
Ω2

4i|k2|

)
× [n2δ(ω3 − Ω2) + n−2δ(ω3 + Ω−2)] [n3δ(ω3 + Ω3) − n−3δ(ω3 − Ω−3)] , (D 4)

where the term involving the contraction 〈η(k1 − k4, −ω4)ψ(k4, ω4)〉 corresponding
to 〈ψ(k, ω = 0)〉 vanishes as was shown in the analysis of the previous term, where
we omitted the terms supported at the zero frequency. Taking the integral over ω3,
omitting the terms supported at the zero frequency, we find

iπ

∫
dk23

(2π)4
(k2 + k3)

2k2
2 k3 · (2k2 + k3)

(
|k3| − k3 · (k2 + k3)

|k2 + k3|

)

×
[
n2n−3δ(Ω2 − Ω−3)

4i|k3| +
n−2n3δ(Ω−2 − Ω3)

4i|k3|

]
+ iπ

∫
dk23

(2π)4

×(k2 + k3)
2k2

2 k3 · (2k2 + k3)

(
|k2| − k2 · (k2 + k3)

|k2 + k3|

)

×
[

−n−2n3δ(Ω3 − Ω−2)

4i|k2| − n2n−3δ(Ω2 − Ω−3)

4i|k2|

]
= 0, (D 5)

where zero is obtained in the same way as with the previous term. The result of this
Appendix is that λ can be written as

λ =
1

2

∫
k2

1k
2
2dk12

(2π)4

∫
dω

2π
〈ψ(k1, ω)ψ(k2, ω = 0)〉. (D 6)
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